8.8 Pointer Expressions and Pointer
Arithmetic (cont.)

Pointer Assignment

* A pointer can be assigned to another pointer if both
pointers are of the sametype.

» Otherwise, a cast operator (normally a
reinterpret_cast; discussed in Section 14.7)
must be used to convert the value of the pointer on the
right of the assignment to the pointer type on the left of
the assignment.

— Exception to this rule is the pointer to void (i.e., void *).

* Any pointer to a fundamental type or class type can be
assigned to a pointer of type void * without casting.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

8.8 Pointer Expressions and Pointer
Arithmetic (cont.)

« Avo1d * pointer cannotbe dereferenced.

— The compiler must know the data type to
determine the number of bytes to dereference for a
particular pointer—for a pointer to vo1id, this
number of bytes cannot be determined.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

Common Programming Error 8.5

Assigning a pointer of one type to a pointer of another
(other than void *) without using a cast (normally a
reinterpret_cast) is a compilation error.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

2

Common Programming Error 8.6

The allowed operations on void * pointers are:
comparing void * pointers with other pointers, casting
void * pointers to other pointer types and assigning
addresses to void * pointers. All other operations on
void * pointers are compilation errors.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

8.8 Pointer Expressions and Pointer
Arithmetic (cont.)

Comparing Pointers

 Pointers can be compared using equality and relational
operators.
— Comparisons using relational operators are meaningless

unless the pointers point to elements of the same built-in
array.

— Pointer comparisons compare the addresses stored in the
pointers.

« A common use of pointer comparison is determining
whether a pointer has the value nul 1ptr, O or NULL
(i.e., the pointer does not point to anything).

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

8.9 Relationship Between Pointers and
Built-In Arrays

 Pointers can be used to do any operation involving array
subscripting.

« Assume the following declarations:

// create 5-element int array b; b 1s a const
pointer

int b[5];

// create int pointer bPtr, which i1sn't a const
pointer

int *bPtr;

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

8.9 Relationship Between Pointers and
Built-In Arrays

* \We can set bPtr to the address of the first element in the
built-in array b with the statement
// assign address of built-in array b to bPtr
bPtr = b;
« This Is equivalent to assigning the address of the first
element as follows:

// also assigns address of built-in array b to
bPtr

bPtr = &J[0];

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

8.9 Relationship Between Pointers and
Built-In Arrays (cont.)

Pointer/Offset Notation

 Built-in array element b[3] can alternatively
be referenced with the pointer expression
« *C bPtr + 3)
* The 3 in the preceding expression is the offset
to the pointer.

 This notation Is referred to as pointer/offset
notation.

— The parentheses are necessary, because the
precedence of *“Is"higher.thanthat of +.

8.9 Relationship Between Pointers and
Built-In Arrays (cont.)

 Just as the built-in array element can be referenced with a
pointer expression, the aaaress
« &b[3]
 can be written with the pointer expression
« bPtr + 3

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

8.9 Relationship Between Pointers and
Built-In Arrays (cont.)

Pointer/Offset Notation with the Built-In Array’s Name as
the Pointer

« The built-in array name can be treated as a pointer and used
In pointer arithmetic.

« For example, the expression
« *(C b + 3)

 also refers to the element b[3].

 In general, all subscripted built-in array expressions can be
written with a pointer and an offset.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

8.9 Relationship Between Pointers and
Built-In Arrays (cont.)

Pointer/Subscript Notation

* Pointers can be subscripted exactly as built-in
arrays can.

* For example, the expression
e« bPtr[1]

« refersto b[1]; this expression uses
pointer/subscript notation.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

Good Programming Practice 8.2

For clarity, use built-in array notation instead of pointer
notation when manipulating built-in arrays.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

8.9 Relationship Between Pointers and
Built-In Arrays (cont.)

Demonstrating the Relationship Between
Pointers and Built-In Arrays

* Figure 8.17 uses the four notations discussed
In this section for referring to built-in array
elements—array subscript notation,
pointer/offset notation with the built-in array’s
name as a pointer, pointer subscript notation
and pointer/offset notation with a pointer—to
accomplish the same task, namely displaying
the four elements.of the built-in array of 1Nnts

Rights Res
P I

I // Fig. 8.17: fig08_17.cpp

2 // Using subscripting and pointer notations with built-in arrays.

3 #include <iostream>

4 using namespace std;

5

6 int mainQ)

7T {

8 int b[] = { , , , }; // create 4-element built-in array b
9 int *bPtr = b; // set bPtr to point to built-in array b

10

11 // output built-in array b using array subscript notation

12 cout << :
13

14 for (size_t i =0; 1 < 4; ++i)

15 cout << << 1 << << b[1] << ;

16

17 // output built-in array b using array name and pointer/offset notation
I8 cout <<

19 << ;
20
21 for (size_t offsetl = 0; offsetl < 4; ++offsetl)
22 cout << << offsetl << << *(b + offsetl) << :
23

Fig. 8.17 | Using subscripting and pointer notations with built-in arrays. (Part
| of 4.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

24 // output built-in array b using bPtr and array subscript notation
25 cout << ;

’

26

27 for (size_t j =0; 3 < 4; ++j)

28 cout << << j << << bPtr[j 1 << ;

29

30 cout << ;

31

32 // output built-in array b using bPtr and pointer/offset notation
33 for (size_t offset2 = (; offset2 < 4; ++offset2)

34 cout << << offset2 <<

35 << *(bPtr + offset2) << ;

36 1} // end main

Fig. 8.17 | Using subscripting and pointer notations with built-in arrays. (Part
20f 4.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

