
8.8 Pointer Expressions and Pointer

Arithmetic (cont.)
Pointer Assignment

• A pointer can be assigned to another pointer if both
pointers are of the same type.

• Otherwise, a cast operator (normally a
reinterpret_cast; discussed in Section 14.7)
must be used to convert the value of the pointer on the
right of the assignment to the pointer type on the left of
the assignment.

– Exception to this rule is the pointer to void (i.e., void *).

• Any pointer to a fundamental type or class type can be
assigned to a pointer of type void * without casting.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

8.8 Pointer Expressions and Pointer

Arithmetic (cont.)

• A void * pointer cannot be dereferenced.

– The compiler must know the data type to

determine the number of bytes to dereference for a

particular pointer—for a pointer to void, this

number of bytes cannot be determined.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

8.8 Pointer Expressions and Pointer

Arithmetic (cont.)

Comparing Pointers

• Pointers can be compared using equality and relational
operators.

– Comparisons using relational operators are meaningless
unless the pointers point to elements of the same built-in
array.

– Pointer comparisons compare the addresses stored in the
pointers.

• A common use of pointer comparison is determining
whether a pointer has the value nullptr, 0 or NULL
(i.e., the pointer does not point to anything).

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

8.9 Relationship Between Pointers and

Built-In Arrays

• Pointers can be used to do any operation involving array
subscripting.

• Assume the following declarations:
// create 5-element int array b; b is a const
pointer

int b[5];
// create int pointer bPtr, which isn't a const
pointer

int *bPtr;

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

8.9 Relationship Between Pointers and

Built-In Arrays

• We can set bPtr to the address of the first element in the
built-in array b with the statement
// assign address of built-in array b to bPtr

bPtr = b;

• This is equivalent to assigning the address of the first
element as follows:
// also assigns address of built-in array b to
bPtr

bPtr = &b[0];

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

8.9 Relationship Between Pointers and

Built-In Arrays (cont.)

Pointer/Offset Notation

• Built-in array element b[3] can alternatively

be referenced with the pointer expression
• *(bPtr + 3)

• The 3 in the preceding expression is the offset

to the pointer.

• This notation is referred to as pointer/offset

notation.

– The parentheses are necessary, because the

precedence of * is higher than that of +. ©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

8.9 Relationship Between Pointers and

Built-In Arrays (cont.)

• Just as the built-in array element can be referenced with a
pointer expression, the address

• &b[3]

• can be written with the pointer expression
• bPtr + 3

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

8.9 Relationship Between Pointers and

Built-In Arrays (cont.)

Pointer/Offset Notation with the Built-In Array’s Name as
the Pointer

• The built-in array name can be treated as a pointer and used
in pointer arithmetic.

• For example, the expression
• *(b + 3)

• also refers to the element b[3].

• In general, all subscripted built-in array expressions can be
written with a pointer and an offset.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

8.9 Relationship Between Pointers and

Built-In Arrays (cont.)

Pointer/Subscript Notation

• Pointers can be subscripted exactly as built-in

arrays can.

• For example, the expression
• bPtr[1]

• refers to b[1]; this expression uses

pointer/subscript notation.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

8.9 Relationship Between Pointers and

Built-In Arrays (cont.)

Demonstrating the Relationship Between

Pointers and Built-In Arrays

• Figure 8.17 uses the four notations discussed

in this section for referring to built-in array

elements—array subscript notation,

pointer/offset notation with the built-in array’s

name as a pointer, pointer subscript notation

and pointer/offset notation with a pointer—to

accomplish the same task, namely displaying

the four elements of the built-in array of ints

named b.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

